admin

鸡兔同笼问题解法反思,鸡兔同笼问题的教案

admin 感悟评价 2024-06-03 36浏览 0

鸡兔同笼怎么解决

1、算术法(抬脚法)让所有的兔子把脚抬起来,那么这时笼子里的动物就都是两台腿的,有多少头就是有多少只,乘以2就能得到现在笼子里有多少腿。这个数量是比实际的腿数少的(因为兔子抬起了两条腿),用实际的腿数减去抬起腿后的腿数,会得到一个差。

2、鸡兔同笼问题,不管“鸡”和“兔”如何变形,只要抓住题型特征,利用假设法,就可以很快解决这一类题目。

3、鸡兔同笼最简单的方法是枚举法、砍腿法。枚举法 分别把鸡和兔子的腿的的数量填入表格中,知道找到正确的答案为止,这种方法只适合与课堂教学中的探索和对其他方法的引导,由于这种方法太过笨拙,用时较多,在日常的练习和考试中一般不适用。所以这种方法大家了解即可。

4、鸡兔同笼问题解决方法有方程法、画图法、金鸡独立法、吹哨法。方程法 设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只。画图法 画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。

5、方法一:分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。

6、鸡兔同笼抬腿法一:假设每只鸡抬一只脚,每只兔抬2只脚。由94÷2=47,即笼子下面有47只脚,这时一只鸡对应1只脚,一只兔子对应2只脚,而笼子上面有35个头。由47-35=12,即如果用35个头对应35只脚的话,还会多出来12只脚,也就是说笼子里有12只兔子 由35-12=23,即笼子里有23只鸡。

鸡兔同笼应用题讲解

1、设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只。方法金鸡独立法:让每只鸡都一只脚站立,每只兔都用两只后脚站立,那么地上的总脚数是原来的一半,即19只脚。

2、因为笼子里鸡和兔的相同数量,所以可以鸡和兔的数量都为x只。

3、鸡兔同笼问题:鸡数量=(头×4-脚)÷(4-2),兔数量=(脚-头×2)÷(4-2)。

4、小学鸡兔同笼类应用题 【含义】这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

5、鸡兔同笼应用题体详解(四个阶段) 鸡兔同笼问题(1)基础级鸡兔同笼,鸡兔共35个头,94条腿,问鸡、兔各多少只?鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

关于鸡兔同笼问题的分析方法和技巧

方法假设法 在解决“鸡兔同笼”问题时,最常见的方法就是假设法,而在孩子的学习过程中,也会喜欢使用这种简便而又快捷的方法。

鸡兔同笼问题可用以下几种方法来解:方法一:列表枚举法 列表枚举法就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题。详细过程见下表:这种方法解题简单,容易理解,但过程太过笨拙、繁琐。

我们如果要求兔的数量,就要把所有的动物假设为鸡来求;如果要求鸡的数量,那就把所有的动物假设是兔子。也就是说,在鸡兔同笼问题中,如果我们要求其中一种东西时,就把所有的东西都当成是另一种东西,这样就能求出它的数量了。

例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有多少只?分析与解鸡兔同笼问题往往用假设法来解即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。

方法二:画图法 画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。14×2=28条,差38-28=10条腿,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。

通过分析题目所给出的条件,找出笼中鸡和兔子数量之间的关系。根据这种关系可以得到笼中鸡和兔子的数量。方法五:递推法 通过观察和总结,发现鸡兔数量之间存在一定的递推关系。因此,可以通过递推的方式来求解问题。递推法通常需要一定的数学基础。

版权声明

本文仅代表作者观点,不代表B5编程立场。
本文系作者授权发表,未经许可,不得转载。

继续浏览有关 鸡兔同笼问题解法反思 的文章
发表评论